|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Из произвольной точки M катета BC прямоугольного треугольника ABC на гипотенузу AB опущен перпендикуляр MN. Докажите, что Через центр окружности проведены еще четыре окружности, касающиеся данной (см. рис.). Сравните площади фигур, выделенных на рисунке черным и серым цветом соответственно. |
Страница: 1 2 3 >> [Всего задач: 12]
|x + 2000| < |x - 2001|.
Существует ли выпуклый четырёхугольник, у которого сумма длин диагоналей не меньше периметра?
1 – x1x2 = 0, 1 – x2x3 = 0, ... 1 – x2000x2001 = 0, 1 – x2001x1 = 0.
В остроугольном треугольнике ABC угол B равен 60°, AM и CN – его высоты, а Q – середина стороны AC.
Страница: 1 2 3 >> [Всего задач: 12] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|