Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Существует ли тетраэдр, у которого пары противоположных рёбер равны 3 и 3, 4 и 4, 5 и 5?

Вниз   Решение


Внутри параллелограмма ABCD отметили точку E так, что  CD = CE.
Докажите, что прямая DE перпендикулярна прямой, проходящей через середины отрезков AE и BC.

ВверхВниз   Решение


В ромб ABCD вписана окружность. Прямая, касающаяся этой окружности в точке P, пересекает стороны AB, BC и продолжение стороны AD соответственно в точках N, Q и M, причём  MN : NP : PQ = 7 : 1 : 2.  Найдите углы ромба.

ВверхВниз   Решение


В футбольном турнире участвовало 20 команд (каждая сыграла с каждой из остальных по одному матчу). Могло ли в результате оказаться так, что каждая из команд-участниц выиграла столько же матчей, сколько сыграла вничью?

ВверхВниз   Решение


Докажите, что равные хорды удалены от центра окружности на равные расстояния.

ВверхВниз   Решение


Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны.

ВверхВниз   Решение


Периметр параллелограмма равен 90, а острый угол равен 60$deg;. Диагональ параллелограмма делит его тупой угол на части в отношении  1 : 3.  Найдите стороны параллелограмма.

ВверхВниз   Решение


Высота, проведённая к основанию равнобедренного треугольника, равна h и вдвое больше своей проекции на боковую сторону. Найдите площадь треугольника.

ВверхВниз   Решение


С помощью циркуля и линейки постройте угол, равный данному углу.

ВверхВниз   Решение


В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны   и  .  Найдите гипотенузу треугольника.

ВверхВниз   Решение


Два угла треугольника равны 10° и 70°. Найдите угол между высотой и биссектрисой, проведёнными из вершины третьего угла треугольника.

ВверхВниз   Решение


На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник квадратом.

ВверхВниз   Решение


Найдите угол между двумя скрещивающимися медианами двух боковых граней правильного тетраэдра.

Вверх   Решение

Задачи

Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 6702]      



Задача 86906

Темы:   [ Линейные зависимости векторов ]
[ Векторное произведение ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна a , а расстояние между диагональю основания и скрещивающимся с ней боковым ребром равно . Найдите радиус описанной сферы.
Прислать комментарий     Решение


Задача 86910

Темы:   [ Правильный тетраэдр ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Найдите угол между двумя скрещивающимися медианами двух боковых граней правильного тетраэдра.
Прислать комментарий     Решение


Задача 86912

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите площадь сечения пирамиды плоскостью, проведённой через середину высоты параллельно плоскости основания.
Прислать комментарий     Решение


Задача 86913

Темы:   [ Линейные зависимости векторов ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите расстояние между диагональю основания и скрещивающимся с ней боковым ребром.
Прислать комментарий     Решение


Задача 86914

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.
Прислать комментарий     Решение


Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .