ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Книги/журналы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным. Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если ∠ABD = 74°, ∠DBC = 38°, ∠BDC = 65°. Докажите, что любое иррациональное число α допускает представление α = [a0; a1, ..., an–1, αn], где a0 – целое, a1, a2, ..., an–1 – натуральные, αn > 1 – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь. Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC. Сколько диагоналей имеет выпуклый: На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что AM = BN = AC. Точка X на луче CA такова, что MX = AB Найдите угол MXN. Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число? |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 4556]
Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?
На мачте пиратского корабля развевается двухцветный прямоугольный флаг, состоящий из чередующихся чёрных и белых вертикальных полос одинаковой ширины. Общее число полос равно числу пленных, находящихся в данный момент на корабле. Сначала на корабле было 12 пленных, а на флаге — 12 полос; затем два пленных сбежали. Как разрезать флаг на две части, а затем сшить их, чтобы площадь флага и ширина полос не изменились, а число полос стало равным 10?
На столе лежат в ряд пять монет: средняя — вверх орлом, а остальные — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?
Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?
В круге отметили точку. Можно ли так разрезать этот круг на три части, чтобы из них можно было бы сложить новый круг, у которого отмеченная точка стояла бы в центре?
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 4556]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке