ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В таблице N×N, заполненной числами, все строки различны (две строки называются различными, если они отличаются хотя бы в одном
элементе). |
Страница: 1 [Всего задач: 4]
В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.
В таблице N×N, заполненной числами, все строки различны (две строки называются различными, если они отличаются хотя бы в одном
элементе).
В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.
На окружности имеются синие и красные точки. Разрешается добавить красную точку и поменять цвета её соседей, а также убрать красную точку и изменить цвета её бывших соседей. Пусть первоначально было всего две красные точки (менее двух точек оставлять не разрешается). Доказать, что за несколько разрешённых операций нельзя получить картину, состоящую из двух синих точек.
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|