Страница: 1
2 >> [Всего задач: 7]
Задача
52485
(#М611)
|
|
Сложность: 4 Классы: 8,9
|
На хорде AB окружности S с центром в точке O взята точка C.
D — вторая точка пересечения окружности S с окружностью,
описанной около треугольника ACO. Докажите, что CD = CB.
Задача
79382
(#М612)
|
|
Сложность: 3+ Классы: 8,9,10
|
a1, a2, a3, ..., an, ... – возрастающая последовательность натуральных чисел. Известно, что an+1 ≤ 10an при всех натуральных n.
Доказать, что бесконечная десятичная дробь 0,a1a2a3..., полученная приписыванием этих чисел друг к другу, непериодическая.
Задача
79385
(#М645)
|
|
Сложность: 5 Классы: 9,10,11
|
Три прямолинейных коридора одинаковой длины l образуют фигуру, изображённую на рисунке. По ним бегают гангстер и полицейский. Максимальная скорость полицейского в 2 раза больше максимальной скорости гангстера. Полицейский сможет увидеть гангстера, если он окажется от него на расстоянии, не большем r. Доказать, что полицейский всегда может поймать гангстера, если: а) r > l/3; б) r > l/4; в) r > l/5; г) r > l/7.
Задача
97763
(#М656)
|
|
Сложность: 4 Классы: 10,11
|
В пространстве имеются 30 ненулевых векторов. Доказать, что среди них
найдутся два, угол между которыми меньше 45°.
Задача
97761
(#М657)
|
|
Сложность: 5 Классы: 9,10,11
|
В таблице N×N, заполненной числами, все строки различны (две строки называются различными, если они отличаются хотя бы в одном
элементе).
Докажите, что из таблицы можно вычеркнуть некоторый столбец так, что в оставшейся таблице опять все строки будут различны.
Страница: 1
2 >> [Всего задач: 7]