ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи N друзей одновременно узнали N новостей, причём каждый узнал одну
новость. Они стали звонить друг другу и обмениваться новостями. |
Страница: 1 [Всего задач: 5]
Будем говорить, что две пирамиды соприкасаются гранями, если эти пирамиды не имеют общих внутренних точек и некоторая грань одной пирамиды пересекается с некоторой гранью другой пирамиды по многоугольнику. Можно ли расположить восемь пирамид в пространстве так, чтобы каждые две соприкасались гранями?
Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну овцу?
Доказать, что любое действительное положительное число можно представить в виде суммы девяти чисел, десятичная запись (каждого из) которых состоит из цифр 0 и 7.
N друзей одновременно узнали N новостей, причём каждый узнал одну
новость. Они стали звонить друг другу и обмениваться новостями.
На бесконечной клетчатой бумаге отмечено шесть клеток (см. рисунок). а) в исходной позиции имеются всего 6 фишек, и они стоят на отмеченных клетках; б) в исходной позиции имеется всего одна фишка, и она стоит в левой нижней отмеченной клетке.
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|