|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найти последнюю цифру числа 1·2 + 2·3 + ... + 999·1000. а) Привести пример такого положительного a, что {a} + {1/a} = 1. |
Страница: 1 [Всего задач: 5]
Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC, γ = ∠C. Докажите, что c ≥ (a + b) sin γ/2.
а) Привести пример такого положительного a, что {a} + {1/a} = 1.
В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.
В таблицу 10×10 нужно записать в каком-то порядке цифры 0, 1, 2, 3, ..., 9 так, что каждая цифра встречалась бы 10 раз.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|