ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Можно ли подобрать такие два натуральных числа X и Y, что Y получается из X перестановкой цифр, и  X + Y = 9...9  (1111 девяток)?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 97958  (#1)

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Можно ли подобрать такие два натуральных числа X и Y, что Y получается из X перестановкой цифр, и  X + Y = 9...9  (1111 девяток)?

Прислать комментарий     Решение

Задача 97960  (#2)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

В окружность вписаны две равнобочные трапеции так, что каждая сторона одной трапеции параллельна некоторой стороне другой.
Докажите, что диагонали одной трапеции равны диагоналям другой.

Прислать комментарий     Решение

Задача 97959  (#2)

Темы:   [ Сфера, описанная около тетраэдра ]
[ Комбинаторная геометрия (прочее) ]
[ Правильный тетраэдр ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?

Прислать комментарий     Решение

Задача 58097  (#3)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3+
Классы: 8,9,10,11

Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Докажите, что найдётся прямая, пересекающая по крайней мере четыре из этих окружностей.

Прислать комментарий     Решение

Задача 97962  (#3)

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3
Классы: 8,9

Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .