Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников?

Вниз   Решение


Длина ребра правильного тетраэдра равна a. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр P этого треугольника удовлетворяет неравенству  P > 2a.

ВверхВниз   Решение


Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.

ВверхВниз   Решение


Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)

ВверхВниз   Решение


Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

ВверхВниз   Решение


Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

ВверхВниз   Решение


Боковая грань правильной четырёхугольной пирамиды образует с плоскостью основания угол 45o . Найдите угол между противоположными боковыми гранями.

ВверхВниз   Решение


Выразите длину симедианы AS через длины сторон треугольника ABC.

ВверхВниз   Решение


Правильный треугольник разрезать на четыре части так, чтобы из них можно было сложить квадрат.

ВверхВниз   Решение


В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.

ВверхВниз   Решение


а) p,  p + 10,  p + 14  – простые числа. Найдите p.

б) p,  2p + 1,  4p + 1  – простые числа. Найдите p.

ВверхВниз   Решение


Автор: Фольклор

Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 97958  (#1)

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Можно ли подобрать такие два натуральных числа X и Y, что Y получается из X перестановкой цифр, и  X + Y = 9...9  (1111 девяток)?

Прислать комментарий     Решение

Задача 97960  (#2)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

В окружность вписаны две равнобочные трапеции так, что каждая сторона одной трапеции параллельна некоторой стороне другой.
Докажите, что диагонали одной трапеции равны диагоналям другой.

Прислать комментарий     Решение

Задача 97959  (#2)

Темы:   [ Сфера, описанная около тетраэдра ]
[ Комбинаторная геометрия (прочее) ]
[ Правильный тетраэдр ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?

Прислать комментарий     Решение

Задача 58097  (#3)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3+
Классы: 8,9,10,11

Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Докажите, что найдётся прямая, пересекающая по крайней мере четыре из этих окружностей.

Прислать комментарий     Решение

Задача 97962  (#3)

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3
Классы: 8,9

Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .