ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего? В таблице n×n разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.) В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске — по 500, в Екатеринбурге — 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны? а) Докажите, что если
a + ha = b + hb = c + hc, то
треугольник ABC правильный.
Дан вписанный четырёхугольник АВСD. Продолжения его противоположных сторон пересекаются в точках P и Q. Пусть К и N – середины диагоналей. Докажите, что если точка пересечения высот остроугольного
треугольника делит высоты в одном и том же отношении, то треугольник
правильный.
В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а
каждые двое встречались в вылазках ровно по разу. Группа туристов должна была прибыть на вокзал в 5 часов. К этому времени с турбазы за ними должен был прийти автобус. Однако, прибыв на вокзал в 3:10, туристы пошли пешком на турбазу. Встретив на дороге автобус, они сели в него и прибыли на турбазу на 20 минут раньше предусмотренного времени. С какой скоростью шли туристы до встречи с автобусом, если скорость автобуса 60 км/ч? Выйдя на маршрут в 4 часа утра, альпинист Джеф Лоу к вечеру достиг пика "Свободная Корея". Переночевав на вершине, на следующий день он вышел в то же время и быстро спустился обратно по пути подъема. Докажите, что на маршруте есть такая точка, которую Лоу во время спуска и во время подъема проходил в одно и то же время суток. Через две вершины треугольника проведены прямые, разбивающие его на три треугольника и четырёхугольник. а) Могут ли площади всех четырёх частей быть равны? б) Какие три из этих частей могут иметь равные площади? Во сколько раз отличается от них площадь четвёртой части?
Конечно или бесконечно число натуральных решений уравнения x² + y³ = z²? Вершины A, B, C треугольника соединены с точками A1, B1, C1, лежащими на противоположных сторонах (не в вершинах). В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами
других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче
своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона.
Какое наибольшее число баронов могло быть при этих условиях? Числа 1, 2, 3, ..., 25 расставляют в таблицу 5×5 так, чтобы в каждой строке числа были расположены в порядке возрастания. Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия: Через S(n) обозначим сумму цифр числа n (в десятичной записи). Первого числа некоторого месяца в магазине было 10 видов товаров по одинаковой цене за штуку. После этого каждый день каждый товар дорожает либо в 2 раза, либо в 3 раза. Первого числа следующего месяца все цены оказались различными. Докажите, что отношение максимальной цены к минимальной больше 27. На кружок пришло 60 учеников. Оказалось, что среди каждых десяти из них есть
не меньше трёх одноклассников. |
Страница: 1 [Всего задач: 4]
Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.
На кружок пришло 60 учеников. Оказалось, что среди каждых десяти из них есть
не меньше трёх одноклассников.
Из точки O, лежащей внутри выпуклого n-угольника A1A2...An, проведены отрезки ко всем вершинам: OA1, OA2, ..., OAn . Оказалось, что все углы между этими отрезками и прилегающими к ним сторонами n-угольника – острые, причём
∠OA1An ≤ ∠OA1A2, ∠OA2A1 ≤ ∠OA2A3, ...,
10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие.
Разрешены две операции:
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке