ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске написано несколько целых положительных чисел: a0, a1, a2, ... , an. Пишем на другой доске следующие числа: b0 – сколько всего чисел на первой доске, b1 – сколько там чисел, больших единицы, b2 – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа c0, c1, c2, ... , построенные по числам второй доски по тому же правилу, по которому числа b0, b1, b2, ... строились по числам первой доски. Докажите, что наборы чисел на первой и третьей досках совпадают.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 98422  (#1)

Тема:   [ Задачи на движение ]
Сложность: 3-
Классы: 6,7,8

Автор: Таирова

Отец и сын катаются на коньках по кругу. Время от времени отец обгоняет сына. После того, как сын переменил направление своего движения на противоположное, они стали встречаться в 5 раз чаще. Во сколько раз отец бегает быстрее сына?

Прислать комментарий     Решение

Задача 108086  (#2)

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что  AC = 1,   BC = 3.
В каком отношении делит сторону DE биссектриса угла C?

Прислать комментарий     Решение

Задача 98424  (#3)

Темы:   [ Раскладки и разбиения ]
[ Геометрические интерпретации в алгебре ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9

На доске написано несколько целых положительных чисел: a0, a1, a2, ... , an. Пишем на другой доске следующие числа: b0 – сколько всего чисел на первой доске, b1 – сколько там чисел, больших единицы, b2 – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа c0, c1, c2, ... , построенные по числам второй доски по тому же правилу, по которому числа b0, b1, b2, ... строились по числам первой доски. Докажите, что наборы чисел на первой и третьей досках совпадают.

Прислать комментарий     Решение

Задача 98425  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Замощения костями домино и плитками ]
Сложность: 4-
Классы: 6,7,8

Автор: Фольклор

На плоскости нарисован чёрный равносторонний треугольник. Имеется девять треугольных плиток того же размера и той же формы. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного треугольника (хотя бы одну точку внутри него). Как это сделать?

Прислать комментарий     Решение

Задача 98426  (#5)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 6,7,8


Квадрат разрезали 18 прямыми, из которых девять параллельны одной стороне квадрата, а девять – другой, на 100 прямоугольников. Оказалось, что ровно девять из них – квадраты. Докажите, что среди этих квадратов найдутся два равных между собой.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .