ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли доску размером 5×5 заполнить доминошками размером 1×2? Братья Петя и Вася решили снять смешной ролик и выложить его в интернет. Сначала они сняли, как каждый из них идёт из дома в школу — Вася шёл 8 минут, а Петя шёл 5 минут. Потом пришли домой и сели за компьютер монтировать видео: они запустили одновременно Васино видео с начала и Петино видео с конца (в обратном направлении); в момент, когда на обоих роликах братья оказались в одной и той же точке пути, они склеили Петино видео с Васиным. Получился ролик, на котором Вася идёт из дома в школу, а потом в какой-то момент вдруг превращается в Петю и идёт домой задом наперёд. А какой длительности получился ролик? Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111. Илья всегда говорит правду, но когда ему задали дважды один и тот же вопрос, он дал на него разные ответы. Какой бы это мог быть вопрос? В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Известно, что площади треугольников AOB и COD равны. Найдите значение дроби В*А*Р*Е*Н*Ь*Е / К*А*Р*Л*С*О*Н, где разные буквы – это разные цифры, а между буквами стоит знак умножения. Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника. На плоскости дан угол, образованный двумя лучами a и b, и
некоторая точка M. а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин. Обозначим через S сумму следующего ряда: Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:
S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S Сумму S можно также найти
объединяя слагаемые ряда (12.1
) в пары:
S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.
Итак, действуя четырьмя разными способами, мы нашли четыре
значения суммы S:
S = Какое же значение
имеет сумма S в действительности?
У каждого марсианина три руки. Могут ли семь марсиан взяться за руки? Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6. Найдите геометрическое место точек M, лежащих
внутри правильного треугольника ABC, для которых
MA2 = MB2 + MC2.
Докажите, что для любого натурального n в десятичной записи чисел 2002n и 2002n + 2n одинаковое число цифр. Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например, 1001! + 2, 1001! + 3, ...,
1001! + 1001). |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]
В Колиной коллекции есть четыре царские золотые пятирублевые монеты. Коле сказали, что какие-то две из них фальшивые. Коля хочет проверить (доказать или опровергнуть), что среди монет есть ровно две фальшивые. Удастся ли ему это сделать с помощью двух взвешиваний на чашечных весах без гирь? (Фальшивые монеты одинаковы по весу, настоящие тоже одинаковы по весу, но фальшивые легче настоящих.)
Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например, 1001! + 2, 1001! + 3, ...,
1001! + 1001).
На квадратном торте расположены треугольные шоколадки, которые не соприкасаются между собой. Всегда ли можно разрезать торт на выпуклые многоугольники так, чтобы каждый многоугольник содержал ровно одну шоколадку? (Торт считайте плоским квадратом.)
На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?
Существуют ли такие натуральные числа a1 < a2 < a3 < ... < a100, что НОД(a1, a2) > НОД(a2, a3) > ... > НОД(a99, a100)?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке