|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи По окружности выписаны n чисел x1, x2, ..., xn, каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого k = 1, 2, ..., n – 1 сумма n произведений чисел, отстоящих друг от друга на k мест, равна нулю В четырёхугольнике ABCD сторона AB равна диагонали AC и перпендикулярна стороне AD, а диагональ AC перпендикулярна стороне CD. На стороне AD взята такая точка K , что AC = AK. Биссектриса угла ADC пересекает BK в точке M. Найдите угол ACM. В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6. Постройте прямоугольный треугольник по катету и гипотенузе. Найдите все такие пары простых чисел p и q, что p³ – q5 = (p + q)². На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу? |
Страница: 1 [Всего задач: 5]
Высотой пятиугольника назовём отрезок перпендикуляра, опущенного из вершины на противоположную сторону, а медианой – отрезок, соединяющий вершину с серединой противоположной стороны. Известно, что в некотором пятиугольнике равны десять длин – длины всех высот и всех медиан. Докажите, что этот пятиугольник – правильный.
Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например, 1001! + 2, 1001! + 3, ...,
1001! + 1001).
По прямой в одном направлении на некотором расстоянии друг от друга движутся пять одинаковых шариков, а навстречу им движутся пять других таких же шариков. Скорости всех шариков одинаковы. При столкновении любых двух шариков они разлетаются в противоположные стороны с той же скоростью, с какой двигались до столкновения. Сколько всего столкновений произойдёт между шариками?
На квадратном торте расположены треугольные шоколадки, которые не соприкасаются между собой. Всегда ли можно разрезать торт на выпуклые многоугольники так, чтобы каждый многоугольник содержал ровно одну шоколадку? (Торт считайте плоским квадратом.)
На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|