ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Клетки шахматной доски занумерованы числами от 1 до 64 так, что соседние номера стоят в соседних (по стороне) клетках. |
Страница: 1 2 >> [Всего задач: 7]
На плоскости даны три красные точки, три синие точки и ещё точка O, лежащая как внутри треугольника с красными вершинами, так и внутри треугольника с синими вершинами, причём расстояние от O до любой красной точки меньше расстояния от O до любой синей точки. Могут ли все красные и все синие точки лежать на одной и той же окружности?
Существуют ли такие натуральные числа a1 < a2 < a3 < ... < a100, что НОК(a1, a2) > НОК(a2, a3) > ... > НОК(a99, a100)?
Клетки шахматной доски занумерованы числами от 1 до 64 так, что соседние номера стоят в соседних (по стороне) клетках.
Пусть F1, F2, F3, ... – последовательность выпуклых четырёхугольников, где Fk+1 (при k = 1, 2, 3, ...) получается так: Fk разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.)
Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке