Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Какое наименьшее число клеток надо отметить на доске 15×15 так, чтобы слон с любой клетки доски бил не менее двух отмеченных клеток? (Слон бьёт и ту клетку, где стоит.)

Вниз   Решение


По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?
  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

ВверхВниз   Решение


На циферблате правильно идущих часов барона Мюнхгаузена есть только часовая, минутная и секундная стрелки, а все цифры и деления стёрты. Барон утверждает, что может определять время по этим часам, поскольку, по его наблюдению, на них в течение дня (с 8.00 до 19.59) не повторяется два раза одно и то же расположение стрелок. Верно ли наблюдение барона? (Стрелки имеют различную длину, движутся равномерно.)

ВверхВниз   Решение


Число x таково, что среди четырёх чисел     ровно одно не является целым.
Найдите все такие x.

ВверхВниз   Решение


Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

ВверхВниз   Решение


Звенья AB, BC и CD ломаной ABCD равны по длине и касаются некоторой окружности.
Доказать, что точка K касания этой окружности со звеном BC, её центр O и точка пересечения прямых AC и BD лежат на одной прямой.

ВверхВниз   Решение


а) У Тани есть 4 одинаковые с виду гири, массы которых равны 1000, 1002, 1004 и 1005 г (неизвестно, где какая), и чашечные весы (показывающие, какая из двух чаш перевесила или что имеет место равенство). Может ли Таня за 4 взвешивания гарантированно определить, где какая гиря? (Следующее взвешивание выбирается по результатам прошедших.)

б) Тот же вопрос, если у весов левая чашка на 1 г легче правой, так что весы показывают равенство, если масса на левой чашке на 1 г больше, чем на правой.

ВверхВниз   Решение


В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 98604  (#1)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

2003 доллара разложили по кошелькам, а кошельки разложили по карманам. Известно, что всего кошельков больше, чем долларов в любом кармане. Верно ли, что карманов больше, чем долларов в каком-нибудь кошельке? (Класть кошельки один в другой не разрешается.)

Прислать комментарий     Решение

Задача 98610  (#2)

Темы:   [ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Имеется 100 палочек, из которых можно сложить 100-угольник.
Может ли случиться, что ни из какого меньшего числа этих палочек нельзя сложить многоугольник?

Прислать комментарий     Решение

Задача 98611  (#3)

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема синусов ]
[ Неравенства для углов треугольника ]
Сложность: 3+
Классы: 10,11

В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

Прислать комментарий     Решение

Задача 98612  (#4)

Темы:   [ Перестановки и подстановки (прочее) ]
[ Десятичная система счисления ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Сто номерков выложили в ряд в порядке возрастания: 00, 01, 02, 03, ..., 99. Затем номерки переставили так, что каждый следующий номерок стал получаться из предыдущего увеличением или уменьшением ровно одной из цифр на 1 (например, после 29 может идти 19, 39 или 28, а 30 или 20 – не может). Какое наибольшее число номерков могло остаться на своих местах?

Прислать комментарий     Решение

Задача 98613  (#5)

Тема:   [ Разные задачи на разрезания ]
Сложность: 4-
Классы: 9,10,11

Дан картонный прямоугольник со сторонами a см и b см, где  b/2 < a < b.
Докажите, что его можно разрезать на три куска, из которых складывается квадрат.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .