ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пастух пас стадо из 100 голов. За это ему заплатили 200 р. За каждого быка заплатили 20 р., за корову – 10 р., а за теленка – 1 р.
Сколько в стаде быков, сколько коров и сколько телят?

   Решение

Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 391]      



Задача 98633

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 6,7,8

Пастух пас стадо из 100 голов. За это ему заплатили 200 р. За каждого быка заплатили 20 р., за корову – 10 р., а за теленка – 1 р.
Сколько в стаде быков, сколько коров и сколько телят?

Прислать комментарий     Решение

Задача 102807

 [Баба-Яга, Кащей и мухоморы]
Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

Баба-Яга и Кащей собрали некоторое количество мухоморов. Количество крапинок на мухоморах Бабы-Яги в 13 раз больше, чем на мухоморах Кащея, но после того, как Баба-Яга отдала Кащею свой мухомор с наименьшим числом крапинок, на её мухоморах стало крапинок только в 8 раз больше, чем у Кащея. Докажите, что в начале у Бабы-Яги было не более 23 мухоморов.

Прислать комментарий     Решение

Задача 102821

Темы:   [ Задачи на смеси и концентрации ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8

Имеются два сосуда емкостью 1 л и 2 л. Из содержимого приготовили 0,5 л смеси, содержащей 40% яблочного сока, и 2,5 л смеси, содержащей 88% яблочного сока. Каково процентное содержание яблочного сока в сосудах?

Прислать комментарий     Решение

Задача 102844

Темы:   [ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Раскраски ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Клетки квадратной таблицы 15×15 раскрашены в красный, синий и зелёный цвета.
Докажите, что найдутся, по крайней мере, две строки, в которых клеток хотя бы одного цвета поровну.

Прислать комментарий     Решение

Задача 102853

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 7,8,9

На какие простые числа, меньшие 17, делится число  20022002 − 1?

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .