ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 180]      



Задача 31362  (#18)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8,9

Некто А загадал число от 1 до 15. Некто В задает вопросы на которые можно отвечать ``да" или ``нет". Может ли В отгадать число, задав a) 4 вопроса; б) 3 вопроса.
Прислать комментарий     Решение


Задача 31363  (#19)

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9

а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).
Доказать, что их можно разбить на пары, в каждой из которых имеется общий язык.
б) То же для группы из 100 человек.
в) То же для группы из 102 человек.

Прислать комментарий     Решение

Задача 31364  (#20)

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 6,7,8

12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед.
Доказать, что найдутся такие команды А, В, С, что А выиграла у В, В выиграла у С, а С – у А.

Прислать комментарий     Решение

Задача 31365  (#21)

Тема:   [ Подсчет двумя способами ]
Сложность: 2+
Классы: 6,7,8

Когда встречаются два жителя Цветочного города, один отдает другому монету в 10 копеек, а тот ему - 2 монеты по 5 копеек. Могло ли случиться так, что за день каждый из 1990 жителей города отдал ровно 10 монет?

Прислать комментарий     Решение


Задача 31366  (#22)

Тема:   [ Соображения непрерывности ]
Сложность: 3-
Классы: 5,6,7,8

Матч между двумя футбольными командами закончился со счетом 8:5. Доказать, что был момент, когда первая команда забила столько же мячей, сколько второй оставалось забить.

Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .