ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Рита, Люба и Варя решали задачи. Чтобы дело шло быстрее, они купили конфет и условились, что за каждую решённую задачу девочка, решившая её первой, получает четыре конфеты, решившая второй — две, а решившая последней — одну. Девочки говорят, что каждая из них решила все задачи и получила 20 конфет, причём одновременных решений не было. Они ошибаются. Как вы думаете, почему? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]
Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.
Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.
Верно ли, что два графа изоморфны, если
В связном графе степени четырёх вершин равны 3, а степени остальных вершин равны 4.
Докажите, что граф, в котором каждые две вершины соединены ровно одним простым путем, является деревом.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке