ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутрь квадрата с координатами левого нижнего угла (0, 0) и координатами правого верхнего угла (100, 100) поместили N квадратиков, стороны которых параллельны осям координат и имеют длину 5. Никакие два квадратика не имеют общих точек. Необходимо найти кратчайший путь из точки (0, 0) в точку (100, 100), который бы не пересекал ни одного из этих N квадратиков.

Входные данные

В первой строке входного файла содержится целое число N (1 ≤ N ≤ 30), в каждой следующих N строк – координаты левого нижнего угла (x, y) очередного из квадратиков (0 ≤ x, y ≤ 95).

Выходные данные

Выведите в выходной файл координаты точек искомого пути, в которых меняется направление движения (включая начальную и конечную точки). Порядок точек в выходном файле должен соответствовать порядку точек в пути.

Пример входного файла

5
5 5
5 15
15 10
15 20
90 90

Пример выходного файла

0 0
5 10
20 20
95 90
100 100

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]      



Задача 60311  (#01.038)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство  2m+n–2mn,  где m и n – натуральные числа.

Прислать комментарий     Решение

Задача 60312  (#01.039)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3-
Классы: 8,9,10

Для каких n выполняются неравенства:   а)  n! > 2n;   б)  2n > n².

Прислать комментарий     Решение

Задача 60313  (#01.040)

Темы:   [ Индукция (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Вычислите произведение  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .