ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 110]      



Задача 57095  (#06.082)

Тема:   [ Вписанные и описанные многоугольники ]
Сложность: 4
Классы: 9

Точка, лежащая внутри описанного n-угольника, соединена отрезками со всеми вершинами и точками касания. Образовавшиеся при этом треугольники попеременно окрашены в красный и синий цвет. Докажите, что произведение площадей красных треугольников равно произведению площадей синих треугольников.
Прислать комментарий     Решение


Задача 57096  (#06.083)

Тема:   [ Вписанные и описанные многоугольники ]
Сложность: 5
Классы: 9

В 2n-угольнике (n нечетно)  A1...A2n, описанном около окружности с центром O, диагонали A1An + 1, A2An + 2,..., An - 1A2n - 1 проходят через точку O. Докажите, что и диагональ AnA2n проходит через точку O.
Прислать комментарий     Решение


Задача 57097  (#06.084)

Тема:   [ Вписанные и описанные многоугольники ]
Сложность: 5
Классы: 9

Окружность радиуса r касается сторон многоугольника в точках  A1,..., An, причем длина стороны, на которой лежит точка Ai, равна ai. Точка X удалена от центра окружности на расстояние d. Докажите, что a1XA12 + ... + anXAn2 = P(r2 + d2), где P — периметр многоугольника.
Прислать комментарий     Решение


Задача 57098  (#06.085)

Тема:   [ Вписанные и описанные многоугольники ]
Сложность: 5+
Классы: 9

Около окружности описан n-угольник  A1...Anl — произвольная касательная к окружности, не проходящая через вершины n-угольника. Пусть ai — расстояние от вершины Ai до прямой lbi — расстояние от точки касания стороны  AiAi + 1 с окружностью до прямой l. Докажите, что:
а) величина  b1...bn/(a1...an) не зависит от выбора прямой l;
б) величина  a1a3...a2m - 1/(a2a4...a2m) не зависит от выбора прямой l, если n = 2m.
Прислать комментарий     Решение


Задача 57099  (#06.086)

Тема:   [ Вписанные и описанные многоугольники ]
Сложность: 5+
Классы: 9

Некоторые стороны выпуклого многоугольника красные, остальные синие. Сумма длин красных сторон меньше половины периметра, и нет ни одной пары соседних синих сторон. Докажите, что в этот многоугольник нельзя вписать окружность.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .