ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 61426  (#10.075)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
Сложность: 4
Классы: 10,11

Докажите следующие неравенства непосредственно и при помощи неравенства Мюрхеда (задача 61424):
  а)  x4y²z + y4x²z + y4z²x + z4y²x + x4z²y + z4x²y ≥ 2(x³y²z² + x²y³z² + x²y²z³);
  б)  x5 + y5 + z5x²y²z + x²yz² + xy²z²;
  в)  x³ + y³ + z³ + t³ ≥ xyz + xyt + xzt + yxt.
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61427  (#10.076)

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 10,11

Докажите неравенства из задачи 61387 при помощи неравенства Мюрхеда (задача 61424).
Как будут выглядеть диаграммы Юнга для соответствующих функций?

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .