ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 6702]      



Задача 54682

Тема:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 2+
Классы: 8,9

Точка M внутри окружности делит хорду этой окружности на отрезки, равные a и b. Через точку M проведена хорда AB, делящаяся точкой M пополам. Найдите AB.

Прислать комментарий     Решение

Задача 54683

Тема:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 2+
Классы: 8,9

Из точки M, расположенной вне окружности на расстоянии от центра, проведена секущая, внутренняя часть которой вдвое меньше внешней и равна радиусу окружности.
Найдите радиус окружности.

Прислать комментарий     Решение

Задача 54685

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 2+
Классы: 8,9

Диагонали AC и BD вписанного в окружность четырёхугольника ABCD взаимно перпендикулярны и пересекаются в точке M. Известно, что  AM = 3,  BM = 4  и  CM = 6.  Найдите CD.

Прислать комментарий     Решение

Задача 54737

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2+
Классы: 8,9

Точка B лежит на отрезке AC, равном 5. Найдите расстояние между серединами отрезков AB и BC.

Прислать комментарий     Решение

Задача 54745

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2+
Классы: 8,9

На прямой последовательно отмечаются точки A, B, C и D, причём  AB = BC = CD = 6.
Найдите расстояние между серединами отрезков AB и CD.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .