Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 6702]
В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.
В окружность вписан прямоугольник ABCD , сторона AB которого
равна a . Из конца K диаметра KP , параллельного стороне AB ,
сторона BC видна под углом β . Найдите радиус окружности.
Треугольники ABC и ABD равны, причём точки C и D не
совпадают. Докажите, что прямая CD перпендикулярна прямой AB.
Докажите, что для любого натурального n существует выпуклый
многоугольник, имеющий ровно n осей симметрии.
Высоты треугольника ABC пересекаются в точке H. Докажите, что
радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.
Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 6702]