Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 48]
Задача
52503
(#М163)
|
|
Сложность: 4 Классы: 8,9
|
Диагонали выпуклого четырёхугольника взаимно перпендикулярны.
Докажите, что четыре проекции точки пересечения диагоналей на
стороны четырёхугольника лежат на одной окружности.
Задача
73699
(#М164)
|
|
Сложность: 5- Классы: 8,9,10
|
На белых клетках бесконечной шахматной доски, заполняющей верхнюю полуплоскость, записаны какие-то числа так, что для каждой чёрной клетки сумма чисел, стоящих в двух соседних с ней клетках – справа и слева, – равна сумме двух других чисел, стоящих в соседних с ней клетках – сверху и снизу. Известно число, стоящее в одной клетке n-й строки (крестик на рисунке), а требуется узнать число, стоящее над ним в (n+2)-й строке (знак вопроса на рисунке). Сколько ещё чисел, стоящих в двух нижних строках (точки на рисунке), нужно для этого знать?
Задача
73700
(#М165)
|
|
Сложность: 5 Классы: 8,9,10
|
На окружности расположено множество
F точек, состоящее из
100 дуг. При любом
повороте R окружности множество
R(
F) имеет хотя бы одну общую точку с
множеством F. (Другими словами, для любого угла α от 0° до 180° в множестве F можно указать две точки, отстоящие одна от другой на угол α.) Какую наименьшую сумму длин могут иметь
100 дуг, образующих
множество F? Каков будет ответ, если дуг
не 100, а n?
Задача
73701
(#М166)
|
|
Сложность: 5- Классы: 7,8,9,10
|
а) Школьники одного класса в сентябре ходили в два туристических похода. В первом походе мальчиков было меньше ⅖ общего числа участников этого похода, во втором – тоже меньше ⅖. Докажите, что в этом классе мальчики составляют меньше 4/7 общего числа учеников, если известно, что каждый из учеников участвовал по крайней мере в одном походе.
б) Пусть в k-м походе, где 1 ≤ k ≤ n, мальчики составляли αk-ю часть общего количества участников этого похода. Какую наибольшую долю могут составлять мальчики на общей встрече всех туристов (всех, кто участвовал хотя бы в одном из n походов)?
Задача
73702
(#М167)
|
|
Сложность: 4 Классы: 8,9,10
|
В любой арифметической прогрессии a, a + d, a + 2d, ..., a + nd, ..., составленной из натуральных чисел, есть бесконечно много членов, в разложении которых на простые множители входят в точности одни и те же простые числа. Докажите это.
Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 48]