Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 35]
|
|
Сложность: 3+ Классы: 10,11
|
Дан треугольник ABC. На сторонах AB, BC, CA взяты соответственно точки C1, A1, B1 так, что AC1 : C1B = BA1 : A1C = CB1 : B1A = 1 : n. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты
соответственно точки C2, A2, B2 так, что A1C2 : C2B1 = B1A2 : A2C1 = C1B2 : B2A1 = n : 1. Доказать, что A2C2 || AC, C2B2 || CB,
B2A2 || BA.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дано уравнение xn – a1xn–1 – a2xn–2 – ... – an–1x – an = 0, где a1 ≥ 0, a2 ≥ 0, an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что если p/q – несократимая рациональная дробь, являющаяся корнем полинома f(x) с целыми коэффициентами, то p – kq есть делитель числа f(k) при любом целом k.
На окружности даны четыре точки
A,
B,
C,
D. Через каждую пару соседних
точек проведена окружность. Вторые точки пересечения соседних окружностей
обозначим через
A1,
B1,
C1,
D1. (Некоторые из них могут совпадать
с прежними.) Доказать, что
A1,
B1,
C1,
D1 лежат на одной
окружности.
|
|
Сложность: 3+ Классы: 10,11
|
Дан
ABC и точка
D внутри него, причем
AC -
DA > 1 и
BC -
BD > 1. Берётся
произвольная точка
E внутри отрезка
AB. Доказать, что
EC -
ED > 1.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 35]