Страница: 1 [Всего задач: 5]
Задача
34996
(#1)
|
|
Сложность: 3 Классы: 10,11
|
Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.
Задача
97875
(#2)
|
|
Сложность: 4- Классы: 8,9
|
Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через N – 1 секунду после ОМN–2 – OMN–1.
При каких N эти положения радиуса делят круг на N равных секторов?
а) Верно ли, что к числу таких N относятся все степени двойки?
б) Относятся ли к числу таких N какие-либо числа, не являющиеся
степенями двойки?
Задача
97876
(#3)
|
|
Сложность: 4 Классы: 8,9,10
|
В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок
состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.
Задача
97877
(#4)
|
|
Сложность: 3+ Классы: 9,10
|
Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг
радиуса R?
Задача
97878
(#5)
|
|
Сложность: 5 Классы: 9,10,11
|
а) Квадрат разбит на прямоугольники. Цепочкой называется такое подмножество K множества этих прямоугольников, что существует сторона S квадрата, целиком закрытая проекциями прямоугольников из K, но при этом ни в какую точку S не проектируются внутренние точки двух прямоугольников из K (мы относим к прямоугольнику и его стороны). Доказать, что любые два прямоугольника разбиения входят в некоторую цепочку.
б) Аналогичная задача для куба, разбитого на прямоугольные параллелепипеды (в определении цепочки нужно заменить сторону на ребро).
Страница: 1 [Всего задач: 5]