ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Числа в вершинах

В неориентированном графе без кратных ребер и петель
расставить в вершинах числа так, чтобы если вершины
соединены ребром, то числа имели общий делитель, а если нет - то нет.

Входные данные.
В файле INPUT.TXT записано число N (0<N<7) - количество вершин в графе.
Затем записана матрица смежности.

Выходные данные.
В файл OUTPUT.TXT вывести N натуральных чисел из диапазона Longint,
которые вы предлагаете приписать вершинам.

Пример файла INPUT.TXT	
3
0 1 1
1 0 0
1 0 0	

Пример файла OUTPUT.TXT
6 2 3

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 31]      



Задача 97913

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Раскраски ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 7,8,9

Каждая клетка шахматной доски закрашена в один из цветов – синий или красный. Докажите, что клетки одного из цветов обладают тем свойством, что их может обойти шахматный ферзь (на клетках этого цвета ферзь может побывать не один раз, на клетки другого цвета он не ставится, но может через них перепрыгивать).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .