Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 41]
|
|
Сложность: 3 Классы: 7,8,9
|
Ученик не заметил знака умножения между двумя трёхзначными числами и написал
одно шестизначное число. Результат получился в три раза больше.
Найти эти числа.
|
|
Сложность: 3+ Классы: 7,8,9
|
Вершины A, B, C треугольника соединены с точками A1, B1, C1, лежащими на противоположных сторонах (не в вершинах).
Могут ли середины отрезков AA1, BB1, CC1 лежать на одной прямой?
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB.
|
|
Сложность: 3+ Классы: 7,8,9
|
Первоначально на доске написано натуральное число A. Разрешается прибавить к нему один из его делителей, отличных от него самого и единицы. С полученным числом разрешается проделать аналогичную операцию, и т. д. Докажите, что из числа A = 4 можно с помощью таких операций прийти к любому наперёд заданному составному числу.
|
|
Сложность: 3+ Классы: 6,7,8
|
Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 41]