Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 393]      



Задача 103750

Темы:   [ Десятичная система счисления ]
[ Полуинварианты ]
Сложность: 3
Классы: 6,7,8

Автор: Ботин Д.А.

Даны две последовательности: 2, 4, 8, 16, 14, 10, 2 и 3, 6, 12. В каждой из них каждое число получено из предыдущего по одному и тому же закону.

а) Найдите этот закон.

б) Найдите все натуральные числа, переходящие сами в себя (по этому закону).

в) Докажите, что число 21991 после нескольких переходов станет однозначным.

Прислать комментарий     Решение


Задача 103753

Темы:   [ Целочисленные решетки (прочее) ]
[ Обход графов ]
Сложность: 3
Классы: 5,6,7

Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4?

Прислать комментарий     Решение

Задача 103757

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7

Автор: Ботин Д.А.

Резидент одной иностранной разведки сообщил в центр о готовящемся подписании ряда двусторонних соглашений между пятнадцатью бывшими республиками СССР. Согласно его донесению, каждая из них заключит договор ровно с тремя другими. Заслуживает ли резидент доверия?

Прислать комментарий     Решение


Задача 103758

Темы:   [ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Может ли горящая в комнате свеча не освещать полностью ни одну из её стен, если в комнате а) 10 стен, б) 6 стен?

Прислать комментарий     Решение


Задача 103763

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7

Если у числа x подсчитать сумму цифр и с полученным числом повторить это ещё два раза, то получится ещё три числа. Найдите самое маленькое x, для которого все четыре числа различны, а последнее из них равно 2.

Прислать комментарий     Решение


Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .