ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 1 2 [Всего задач: 9]
Знайка пришёл в гости к братьям-близнецам Винтику и Шпунтику, зная, что один из них никогда не говорит правду, и спросил одного из них: ''Ты Винтик?'' ''Да,'' — ответил тот. Когда Знайка спросил об этом же второго, то получил столь же чёткий ответ и сразу определил, кто есть кто. Кого звали Винтиком?
Метро города Урюпинска состоит из трёх линий и имеет по крайней мере две конечные станции и по крайней мере два пересадочных узла, причём ни одна из конечных станций не является пересадочной. С каждой линии на любую из остальных можно перейти по крайней мере в двух местах. Нарисуйте пример такой схемы метро, если известно, что это можно сделать, не отрывая карандаша от бумаги и не проводя два раза один и тот же отрезок.
Электрик был вызван для ремонта гирлянды из четырёх соединённых последовательно лампочек, одна из которых перегорела. На вывинчивание любой лампочки из гирлянды уходит 10 секунд, на завинчивание -- 10 секунд. Время, которое тратится на другие действия, мало. За какое наименьшее время электрик заведомо может найти перегоревшую лампочку, если у него есть одна запасная лампочка?
Даны две последовательности: 2, 4, 8, 16, 14, 10, 2 и 3, 6, 12. В каждой из них каждое число получено из предыдущего по одному и тому же закону. а) Найдите этот закон. б) Найдите все натуральные числа, переходящие сами в себя (по этому закону). в) Докажите, что число 21991 после нескольких переходов станет однозначным.
Страница: << 1 2 [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке