Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 39]
|
|
Сложность: 2+ Классы: 5,6,7,8
|
Без ореха (от дупла до орешника) белка бежит со скоростью 4 м/с, а с орехом (от орешника до дупла) – со скоростью 2 м/с. На путь от дупла до орешника и обратно она тратит 54 секунды. Найдите расстояние от дупла до орешника.
|
|
Сложность: 2+ Классы: 5,6,7,8
|
В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?
|
|
Сложность: 2+ Классы: 6,7,8
|
На вопрос о возрасте его детей математик ответил:
– У нас с женой трое детей. Когда родился наш первенец, суммарный возраст членов семьи был равен 45 годам, год назад, когда родился третий ребёнок – 70 годам, а сейчас суммарный возраст детей – 14 лет.
Сколько лет каждому ребенку, если известно, что у всех членов семьи дни рождения в один и тот же день?
|
|
Сложность: 2+ Классы: 7,8,9
|
Один градус шкалы Цельсия равен 1,8 градусов шкалы Фаренгейта, при этом 0° по Цельсию соответствует 32° по шкале Фаренгейта.
Может ли температура выражаться одинаковым числом градусов как по Цельсию, так и по Фаренгейту?
|
|
Сложность: 2+ Классы: 7,8,9
|
Найдите все такие функции f(x), что f(2x + 1) = 4x² + 14x + 7.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 39]