ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 105135

Темы:   [ Теория алгоритмов (прочее) ]
[ Разложение в произведение транспозиций и циклов ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 9,10,11

Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?

Прислать комментарий     Решение

Задача 105139

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4-
Классы: 10,11

Докажите, что на графике функции  y = x³ можно отметить такую точку A, а на графике функции  y = x³ + |x| + 1  – такую точку B, что расстояние AB не превышает 1/100.

Прислать комментарий     Решение

Задача 108118

Темы:   [ Неравенства с площадями ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средняя линия треугольника ]
[ Отношение площадей подобных треугольников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD точки E и F являются серединами сторон BC и CD соответственно. Отрезки AE, AF и EF делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?

Прислать комментарий     Решение

Задача 108119

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Признаки и свойства параллелограмма ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Шестиугольники ]
Сложность: 4-
Классы: 8,9

Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны.

Прислать комментарий     Решение

Задача 105123

Темы:   [ Симметричная стратегия ]
[ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
Сложность: 4
Классы: 7,8,9

Двое игроков по очереди выставляют на доску 65×65 по одной шашке. При этом ни в одной линии (горизонтали или вертикали) не должно быть больше двух шашек. Кто не может сделать ход – проиграл. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .