ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 132]      



Задача 108992

Тема:   [ Тождественные преобразования ]
Сложность: 5
Классы: 8,9,10

Доказать, что если

(x(y+z-x))/ x=(y(z+x-y))/ y=(z(x+y-z))/ z,

то xyyx=zyyz=xzzx .
Прислать комментарий     Решение

Задача 108994

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 5
Классы: 8,9,10

На окружности даны три точки A,B,C . Построить (циркулем и линейкой) на этой окружности четвёртую точку D так, чтобы в полученный четырёхугольник можно было бы вписать окружность.
Прислать комментарий     Решение


Задача 108997

Темы:   [ Максимальное/минимальное расстояние ]
[ Куб ]
[ Теорема Пифагора в пространстве ]
Сложность: 5
Классы: 10,11

На диагонали AC нижней грани единичного куба ABCDA1B1C1D1 отложен отрезок AE длины l . На диагонали B1D1 его верхней грани отложен отрезок B1F длиной ml . При каком l (и фиксированном m>0 ) длина отрезка EF будет наименьшей?
Прислать комментарий     Решение


Задача 109014

Темы:   [ Наибольшая или наименьшая длина ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Построения с помощью вычислений ]
Сложность: 5
Классы: 8,9,10

Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.
Прислать комментарий     Решение


Задача 109148

Темы:   [ Площадь сечения ]
[ Правильный тетраэдр ]
[ Свойства сечений ]
Сложность: 5+
Классы: 10,11

Ребро правильного тетраэдра равно a . Найти стороны и площадь сечения, параллельного двум его скрещивающимся рёбрам и отстоящего от центра тетраэдра на расстояние b , причём 0<b<a/4 .
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .