ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 7526]      



Задача 35714

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
Сложность: 3-
Классы: 7,8,9

На столе стоят восемь стаканов с водой. Разрешается взять любые два стакана и уравнять в них количества воды, перелив часть воды из одного стакана в другой. Докажите, что с помощью таких операций можно добиться того, чтобы во всех стаканах было поровну воды.
Прислать комментарий     Решение


Задача 35803

Темы:   [ Поворот (прочее) ]
[ Многоугольники (прочее) ]
Сложность: 3-
Классы: 9,10

Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника?
Прислать комментарий     Решение


Задача 52526

Темы:   [ Метод ГМТ ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3-
Классы: 8,9

С помощью циркуля и линейки постройте окружность, проходящую через две данные точки A и B так, чтобы угол между радиусом круга, проведённым в точку A, и хордой AB был равен 30o.

Прислать комментарий     Решение


Задача 52540

Темы:   [ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

В прямой угол вписана окружность. Хорда, соединяющая точки касания, равна 2. Найдите расстояние от центра окружности до этой хорды.

Прислать комментарий     Решение


Задача 52544

Темы:   [ Общая касательная к двум окружностям ]
[ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Даны две окружности радиусов R и r, одина вне другой. К ним проведены две общие внешние касательные. Найдите их длину (между точками касания), если их продолжения образуют прямой угол. (R > r).

Прислать комментарий     Решение


Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .