|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что система уравнений x1 – x2 = a, x3 – x4 = b, x1 + x2 + x3 + x4 = 1 имеет хотя бы одно положительное решение тогда и только тогда, когда |a| + |b| < 1. |
Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 7526]
а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число.
На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Дана клетчатая доска размером а) 10×12; б) 9×10; в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия?
Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 7526] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|