ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждый день Фрёкен Бок испекает квадратный торт размером 3×3. Карлсон немедленно вырезает себе из него четыре квадратных куска размером 1×1 со сторонами, параллельными сторонам торта (не обязательно по линиям сетки 3×3). После этого Малыш вырезает себе из оставшейся части торта квадратный кусок со сторонами, также параллельными сторонам торта. На какой наибольший кусок торта может рассчитывать Малыш вне зависимости от действий Карлсона?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109892  (#96.4.11.1)

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9

Найдите все такие пары квадратных трёхчленов  x² + ax + bx² + cx + d,  что a и b – корни второго трёхчлена, c и d – корни первого.

Прислать комментарий     Решение

Задача 109879  (#96.4.11.2)

Темы:   [ Системы точек ]
[ Поворот помогает решить задачу ]
[ Соображения непрерывности ]
Сложность: 4+
Классы: 10,11

Назовем медианой системы 2 n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2 n точек, никакие три из которых не лежат на одной прямой?
Прислать комментарий     Решение


Задача 109880  (#96.4.11.3)

Темы:   [ Длины сторон (неравенства) ]
[ Теорема косинусов ]
[ Покрытия ]
Сложность: 4+
Классы: 9,10,11

Длина наибольшей стороны треугольника равна 1. Докажите, что три круга радиуса с центрами в вершинах покрывают весь треугольник.
Прислать комментарий     Решение


Задача 109881  (#96.4.11.4)

Темы:   [ Свойства коэффициентов многочлена ]
[ Производная и кратные корни ]
[ Многочлен n-й степени имеет не более n корней ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 9,10,11

Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?

Прислать комментарий     Решение

Задача 109882  (#96.4.11.5)

Темы:   [ Итерации ]
[ Уравнения с модулями ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4+
Классы: 9,10,11

Дана функция f(x) = | 4 - 4|x|| - 2 . Сколько решений имеет уравнение f(f(x)) = x ?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .