Страница: 1
2 >> [Всего задач: 8]
Задача
110132
(#03.4.9.1)
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что стороны любого неравнобедренного треугольника можно либо все
увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.
Задача
110140
(#03.4.9.2)
|
|
Сложность: 3+ Классы: 7,8,9,10
|
По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя
направления, ползёт по жуку. Известно, что проекции жуков на ось OX
никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.
Задача
108123
(#03.4.9.3)
|
|
Сложность: 4 Классы: 8,9
|
В равнобедренном треугольнике ABC (AB = BC) средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.
Задача
110134
(#03.4.9.4)
|
|
Сложность: 4 Классы: 8,9,10
|
Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?
Задача
108124
(#03.4.9.5)
|
|
Сложность: 4+ Классы: 8,9
|
Пусть
I – точка пересечения биссектрис треугольника
ABC .
Обозначим через
A' ,
B' ,
C' точки, симметричные точке
I
относительно сторон треугольника
ABC . Докажите, что если
окружность, описанная около треугольника
A'B'C' , проходит
через вершину
B , то
ABC = 60
o .
Страница: 1
2 >> [Всего задач: 8]