ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 115894  (#8.6)

Темы:   [ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Можно ли расположить на плоскости четыре равных многоугольника так, чтобы каждые два из них не имели общих внутренних точек, но имели общий отрезок границы?

Прислать комментарий     Решение

Задача 115895  (#8.7)

Темы:   [ Построение треугольников по различным элементам ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9,10,11

Вокруг треугольника ABC описали окружность Ω. Пусть L и W – точки пересечения биссектрисы угла A со стороной BC и окружностью Ω соответственно. Точка O – центр описанной окружности треугольника ACL. Восстановите треугольник ABC, если даны окружность Ω и точки W и O.

Прислать комментарий     Решение

Задача 115896  (#8.8)

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Углы между биссектрисами ]
[ ГМТ - окружность или дуга окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10,11

Автор: Белухов Н.

Вписанная и вневписанная окружности треугольника ABC касаются стороны BC в точках M и N. Известно, что  ∠BAC = 2∠MAN.
Докажите, что  BC = 2MN.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .