Страница:
<< 1 2 [Всего задач: 8]
Задача
116651
(#11.6)
|
|
Сложность: 4- Классы: 8,9,10
|
На столе лежит куча из более чем n² камней. Петя и Вася по очереди берут камни из кучи, первым берёт Петя. За один ход можно брать любое простое число камней, меньшее n, либо любое кратное n число камней, либо один камень. Докажите, что Петя может действовать так, чтобы взять последний камень независимо от действий Васи.
Задача
116652
(#11.7)
|
|
Сложность: 4+ Классы: 10,11
|
Для натурального a обозначим через P(a) наибольший простой делитель числа a² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел a, b, c, что P(a) = P(b) = P(c).
Задача
116653
(#11.8)
|
|
Сложность: 5 Классы: 10,11
|
Дан неравнобедренный треугольник ABC. Пусть N – середина дуги BAC его описанной окружности, а M – середина стороны BC. Обозначим через I1 и I2 центры вписанных окружностей треугольников ABM и ACM соответственно. Докажите, что точки I1, I2, A,
N лежат на одной окружности.
Страница:
<< 1 2 [Всего задач: 8]