ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 116799  (#9.2.3)

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В круговом шахматном турнире участвует 9 мальчиков и 3 девочки (каждый играет с каждым один раз, победа – 1 очко; ничья – 0,5; поражение – 0). Может ли в итоге оказаться, что сумма очков, набранных всеми мальчиками, будет равна сумме очков, набранных всеми девочками?

Прислать комментарий     Решение

Задача 116800  (#9.3.1)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Докажите, что если  а > 0,  b > 0,  c > 0  и  аb + bc + ca ≥ 12,  то  a + b + c ≥ 6.

Прислать комментарий     Решение

Задача 108686  (#9.3.2)

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Общие четырехугольники ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD биссектрисы углов CAD и CBD пересекаются на стороне CD.
Докажите, что биссектрисы углов ACB и ADB пересекаются на стороне AB.

Прислать комментарий     Решение

Задача 116802  (#9.3.3)

Темы:   [ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

Может ли число  (x² + x + 1)² + (y² + y + 1)²  при каких-то целых x и y оказаться точным квадратом?

Прислать комментарий     Решение

Задача 116803  (#9.4.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Средние величины ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Известно, что модули корней каждого из двух квадратных трёхчленов  x² + ax + b  и  x² + cx + d  меньше 10. Может ли трёхчлен    иметь корни, модули которых не меньше 10?

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .