Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]
|
|
Сложность: 3+ Классы: 10,11
|
В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
Ребёнок поставил четыре одинаковых кубика так, что буквы на сторонах кубиков, обращённых к нему, образуют его имя (см. рисунок). Нарисуйте, как расположены остальные буквы на данной развёртке кубика и определите, как зовут ребёнка.
|
|
Сложность: 4- Классы: 9,10
|
Дана равнобокая трапеция ABCD (AD || BC). На дуге AD (не содержащей точек B и C) описанной окружности этой трапеции произвольно выбрана точка M. Докажите, что основания перпендикуляров, опущенных из вершин A и D на отрезки BM и CM, лежат на одной окружности.
Даны n + 1 попарно различных натуральных чисел, меньших 2n (n > 1).
Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]