ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116931  (#10.1)

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

Даны натуральные числа M и N, большие десяти, состоящие из одинакового количества цифр и такие, что  M = 3N.  Чтобы получить число M, надо в числе N к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число N?

Прислать комментарий     Решение

Задача 116940  (#10.2)

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9,10

В остроугольном треугольнике ABC проведены высоты AA1 и CC1. Описанная окружность Ω треугольника ABC пересекает прямую A1C1 в точках A' и C'. Касательные к Ω, проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности Ω.

Прислать комментарий     Решение

Задача 116941  (#10.3)

Темы:   [ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Даны три квадратных трёхчлена P(x), Q(x) и R(x) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена R(x) в многочлен  P(x) + Q(x)  получаются равные значения. Аналогично при подстановке корней трёхчлена P(x) в многочлен  Q(x) + R(x)  получаются равные значения, а также при подстановке корней трёхчлена Q(x) в многочлен  P(x) + R(x)  получаются равные значения. Докажите, что три числа: сумма корней трёхчлена P(x), сумма корней трёхчлена Q(x) и сумма корней трёхчлена R(x) равны между собой.

Прислать комментарий     Решение

Задача 116942  (#10.4)

Темы:   [ Теория множеств (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  A1, A2, A3, ...  так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась  k + 2013?

Прислать комментарий     Решение

Задача 116936  (#10.5)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10

30 девочек – 13 в красных платьях и 17 в синих платьях – водили хоровод вокруг новогодней ёлки. Впоследствии каждую из них спросили, была ли её соседка справа в синем платье. Оказалось, что правильно ответили те и только те девочки, которые стояли между девочками в платьях одного цвета. Сколько девочек могли ответить утвердительно?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .