Страница: << 1 2 [Всего задач: 8]
Задача
64398
(#9.6)
|
|
Сложность: 3+ Классы: 8,9,10
|
Через вершину B правильного треугольника ABC проведена прямая l. Окружность ωa с центром Ia касается стороны BC в точке A1 и прямых l и AC. Окружность ωc с центром Ic касается стороны BA в точке C1 и прямых l и AC. Докажите, что ортоцентр треугольника A1BC1 лежит на прямой IaIc.
Задача
64399
(#9.7)
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть O – одна из точек пересечения окружностей ω1 и ω2. Окружность ω с центром O пересекает ω1 в точках A и B, а ω2 – в точках C и D. Пусть X – точка пересечения прямых AC и BD. Докажите, что все такие точки X лежат на одной прямой.
Задача
64400
(#9.8)
|
|
Сложность: 4+ Классы: 8,9,10
|
Три велосипедиста ездят по кольцевой дороге радиуса 1 км против часовой стрелки с постоянными различными скоростями.
Верно ли, что, если они будут кататься достаточно долго, то найдётся момент, когда расстояние между каждыми двумя из них будет больше 1 км?
Страница: << 1 2 [Всего задач: 8]