Страница: 1
2 >> [Всего задач: 7]
Задача
64448
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Есть 100 красных, 100 жёлтых и 100 зелёных палочек. Известно, что из любых трёх палочек трёх разных цветов можно составить треугольник.
Докажите, что найдётся такой цвет, что из любых трёх палочек этого цвета можно составить треугольник.
Задача
64449
(#2)
|
|
Сложность: 3+ Классы: 8,9,10
|
Учитель выбрал 10 подряд идущих натуральных чисел и сообщил их Пете и Васе. Каждый мальчик должен разбить эти 10 чисел на пары, подсчитать произведение чисел в каждой паре, а затем сложить полученные пять произведений. Докажите, что мальчики могут сделать это так, чтобы разбиения на пары у них не были одинаковыми, но итоговые суммы совпадали.
Задача
64450
(#3)
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике ABC угол C прямой. На катете CB как на диаметре во внешнюю сторону построена полуокружность, точка N – середина этой полуокружности. Докажите, что прямая AN делит пополам биссектрису CL.
Задача
64451
(#4)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного?
Задача
64452
(#5)
|
|
Сложность: 4 Классы: 8,9,10
|
В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону.
Докажите, что хотя бы у одного из перпендикуляров основание попадёт на сторону (а не на её продолжение).
Страница: 1
2 >> [Всего задач: 7]