ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 64948

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9,10

В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).

Прислать комментарий     Решение

Задача 64949

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные уравнения и системы уравнений ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Про коэффициенты a, b, c и d двух квадратных трёхчленов  x² + bx + c  и  x² + ax + d  известно, что 0 < a < b < c < d.
Могут ли эти трёхчлены иметь общий корень?

Прислать комментарий     Решение

Задача 64954

Темы:   [ Деление с остатком ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10,11

Если разделить 2014 на 105, то в частном получится 19 и в остатке тоже 19.
На какие ещё натуральные числа можно разделить 2014, чтобы частное и остаток совпали?

Прислать комментарий     Решение

Задача 64955

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3
Классы: 9,10,11

Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.

Прислать комментарий     Решение

Задача 64960

Тема:   [ Тригонометрические неравенства ]
Сложность: 3
Классы: 10,11

Не используя калькулятора, определите знак числа  (cos(cos 1) – cos 1)(sin(sin 1) – sin 1).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .