Страница: 1 [Всего задач: 5]
Задача
65385
(#1)
|
|
Сложность: 4- Классы: 8,9,10,11
|
У каждого целого числа от n + 1 до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители.
Докажите, что получится n².
Задача
65387
(#2)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?
Задача
65388
(#3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
У продавца и покупателя в сумме 1999 рублей монетами и купюрами в 1, 5, 10, 50, 100, 500 и 1000 рублей. Кот в мешке стоит целое число рублей, причём денег у покупателя достаточно. Докажите, что покупатель сможет купить кота, получив причитающуюся сдачу.
|
|
Сложность: 3+ Классы: 9,10,11
|
На сторонах единичного квадрата как на гипотенузах построены во внешнюю сторону прямоугольные треугольники. Пусть A, B, C и D – вершины их прямых углов, а O1, O2,
O3 и O4 – центры вписанных окружностей этих треугольников. Докажите, что
а) площадь четырёхугольника ABCD не превосходит 2;
б) площадь четырёхугольника O1O2O3O4 не превосходит 1.
Задача
65390
(#5)
|
|
Сложность: 4 Классы: 10,11
|
Бумажный тетраэдр разрезали по трём ребрам, не принадлежащим одной грани. Могло ли случиться, что полученную развёртку нельзя расположить на плоскости без самопересечений (в один слой).
Страница: 1 [Всего задач: 5]