Страница: 1 [Всего задач: 5]
Задача
65551
(#1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Три окружности проходят через точку X. A, B, C – точки их пересечения, отличные от X. A' – вторая точка пересечения прямой AX и описанной окружности треугольника BCX. Точки B' и C' определяются аналогично. Докажите, что треугольники ABC', AB'C и A'BC подобны.
Задача
65552
(#2)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ящике лежат 100 шариков: белые, синие и красные. Известно, что если, не заглядывая в ящик, вытащить 26 шариков, то среди них обязательно найдутся 10 шариков одного цвета. Какое наименьшее число шариков нужно вытащить, не заглядывая в ящик, чтобы среди них наверняка нашлись 30 шариков одного цвета?
Задача
65553
(#3)
|
|
Сложность: 3+ Классы: 10,11
|
Даны два многочлена P(x) и Q(x) положительной степени, причём P(P(x)) ≡ Q(Q(x)) и P(P(P(x))) ≡ Q(Q(Q(x))).
Обязательно ли тогда P(x) ≡ Q(x)?
Задача
65550
(#4)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые приблизительно равны? Слагаемых может быть одно или несколько. Числа называются приблизительно равными, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.
Задача
65554
(#5)
|
|
Сложность: 4- Классы: 9,10,11
|
При каких N числа от 1 до N можно расставить в другом порядке так, чтобы среднее арифметическое любой группы из двух или более подряд стоящих чисел не было целым?
Страница: 1 [Всего задач: 5]