ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 65896

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3+
Классы: 6,7

На координатной прямой отмечено несколько точек (больше двух). Каждая точка, кроме двух крайних, находится ровно посередине между какими-то двумя отмеченными. Могут ли все отрезки, внутри которых нет отмеченных точек, иметь различные длины?

Прислать комментарий     Решение

Задача 65897

Темы:   [ Числовые таблицы и их свойства ]
[ Системы линейных уравнений ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 6,7

В трёх клетках таблицы 3×3 стоят числа (см. рисунок). Требуется заполнить числами остальные клетки так, чтобы во всех строках, столбцах и главных диагоналях суммы чисел оказались равными. Докажите, что это можно сделать единственным способом, и заполните таблицу.

Прислать комментарий     Решение

Задача 65898

Темы:   [ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 6,7

Вдоль прямолинейного участка границы установлено 15 столбов. Около каждого столба поймали несколько близоруких шпионов. Для каждого столба одного из пойманных около него шпионов допросили. Каждый из допрошенных честно сказал, сколько других шпионов он видел. При этом видел он только тех, кто находился около его столба и около ближайших соседних столбов. Можно ли по этим данным восстановить численность шпионов, пойманных около каждого столба?

Прислать комментарий     Решение

Задача 65900

Тема:   [ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8

Расставьте в левой части равенства     знаки арифметических операций и скобки так, чтобы равенство стало верным для всех а, отличных от нуля.

Прислать комментарий     Решение

Задача 65901

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 7,8

Точки пересечения графиков четырёх функций, заданных формулами  y = kx + b,  y = kx – b,  y = mx + b  и  y = mx – b,  являются вершинами четырёхугольника. Найдите координаты точки пересечения его диагоналей.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .