ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 66839  (#6)

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Неравенство Коши ]
Сложность: 4
Классы: 8,9,10,11

Куб, состоящий из $(2n)^3$ единичных кубиков, проткнут несколькими спицами, параллельными рёбрам куба. Каждая спица протыкает ровно 2$n$ кубиков, каждый кубик проткнут хотя бы одной спицей.
  а) Докажите, что можно выбрать такие $2n^2$ спиц, идущих в совокупности всего в одном или двух направлениях, что никакие две из этих спиц не протыкают один и тот же кубик.
  б) Какое наибольшее количество спиц можно гарантированно выбрать из имеющихся так, чтобы никакие две выбранные спицы не протыкали один и тот же кубик?

Прислать комментарий     Решение

Задача 66840  (#7)

Темы:   [ Функция Эйлера ]
[ Принцип Дирихле (прочее) ]
[ Формула включения-исключения ]
Сложность: 4+
Классы: 8,9,10,11

Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных)  $a(b - c)$  делится на $n$, то  $b = c$.
Докажите, что красных чисел не больше чем φ($n$).

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .