Страница:
<< 1 2 [Всего задач: 9]
|
|
Сложность: 3 Классы: 6,7,8
|
Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте.
а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние).
б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше.
(Доказательство максимальности от участников не требовалось)
|
|
Сложность: 3+ Классы: 6,7,8
|
Среди 20 школьников состоялся турнир по теннису. Каждый участник проводил каждый день по одной встрече; в итоге за 19 дней каждый сыграл ровно по одному разу со всеми остальными. Теннисный корт в школе один, поэтому матчи шли по очереди. Сразу после своего первого выигрыша в турнире участник получал фирменную майку. Ничьих в теннисе не бывает. Петя стал одиннадцатым участником, получившим майку, а Вася – пятнадцатым. Петя получил свою майку в одиннадцатый день турнира. А в какой день получил майку Вася?
|
|
Сложность: 3+ Классы: 6,7,8
|
Шеренга солдат-новобранцев стояла лицом к сержанту. По команде «налево» некоторые повернулись налево, остальные – направо. Оказалось, что в затылок соседу смотрит в шесть раз больше солдат, чем в лицо. Затем по команде «кругом» все развернулись в противоположную сторону. Теперь в затылок соседу стали смотреть в семь раз больше солдат, чем в лицо. Сколько солдат в шеренге?
|
|
Сложность: 3+ Классы: 7,8,9
|
В четырёхугольнике $ABCD$ известно, что $AB=BC=CD$, $\angle A = 70^\circ$ и $\angle B = 100^\circ$. Чему могут быть равны углы $C$ и $D$?
Страница:
<< 1 2 [Всего задач: 9]